Derivation of the Formula for the Derivative of any Monomial
Brian Tomasik
17 June 2004

This formula for the derivative of any monomial will presently be proved:

If \(y = x^n \), then \(\frac{dy}{dx} = nx^{n-1} \)

Here is the equation from which this derivation begins:

If \(y = f(x) \), then \(\frac{dy}{dx} = \frac{f(x + h) - f(x)}{h} \)

in the limit that \(h \to 0 \)

Before proceeding onward, it will be useful to review binomial expansion. As an illustration, consider the following example:

\[
(x + h)^3 = (x + h)(x + h)(x + h) = (x^2 + xh + xh + h^2)(x + h) = x^3 + x^2h + x^2h + xh^2 + xh^2 + h^3 = x^3 + 3x^2h + 3xh^2 + h^3
\]

Notice the pattern of the exponents of \(x \) and \(h \). Notice, too, the coefficients of the terms when arranged in descending order for \(x \): 1 3 3 1. Each coefficient is the result of a combination, \(\binom{n}{r} \), in which \(n \) equals the power to which \((x + h) \) is raised (namely, 3) and \(r \) equals the number of the term minus one. Thus, the expression could be written in this way:

\[
(\binom{3}{0})x^3 + (\binom{3}{1})x^2h + (\binom{3}{2})xh^2 + (\binom{3}{3})h^3
\]

In general, then, the expansion of \((x + h)^n \) can be written thus, assuming \(n \) to be a natural number:

\[
(\binom{n}{0})x^0h^n + (\binom{n}{1})x^1h^{n-1} + (\binom{n}{2})x^2h^{n-2} + \ldots + (\binom{n}{n-1})x^{n-1}h + (\binom{n}{n})x^0h^n
\]

Returning to the derivative formula, if \(f(x) = x^n \), then \(\frac{dy}{dx} \) will equal \(\frac{[(x + h)^n - x^n]}{h} \), in the limit that \(h \to 0 \). Substituting the expansion of \((x + h)^n \) produces

\[
\frac{dy}{dx} =
\]
\[\left((\binom{n}{0})x^n h^0 + (\binom{n}{1})x^{n-1} h^1 + (\binom{n}{2})x^{n-2} h^2 + \ldots + (\binom{n}{n-1})x^1 h^{n-1} + (\binom{n}{n})x^0 h^n \right) - x^n \right) / h, \]
in the limit that \(h \to 0 \)

It is always true that \(\binom{n}{0} = 1 \) and that \(h^0 = 1 \). Wherefore, the first term in the expansion of \((x + h)^n \) becomes simply \(x^n \), in which form it cancels with the \(-x^n \) to yield

\[\frac{dy}{dx} = \left[(\binom{n}{1})x^{n-1} h^1 + (\binom{n}{2})x^{n-2} h^2 + \ldots + (\binom{n}{n-1})x^1 h^{n-1} + (\binom{n}{n})x^0 h^n \right] / h, \]
in the limit that \(h \to 0 \)

Each term in the numerator now contains at least one \(h \), making possible division by the denominator:

\[\frac{dy}{dx} = (\binom{n}{1})x^{n-1} + (\binom{n}{2})x^{n-2} h^1 + \ldots + (\binom{n}{n-1})x^1 h^{n-2} + (\binom{n}{n})x^0 h^{n-1}, \]
in the limit that \(h \to 0 \)

Because \(h \) is approaching zero, all terms containing \(h \) as a factor become zero:

\[\frac{dy}{dx} = (\binom{n}{1})x^{n-1} + 0 + \ldots + 0 + 0 \]

There are always \(n \) ways in which to take one element from a set containing \(n \) elements. Hence, \(\binom{n}{1} \) will always equal \(n \). And, assuming \(n \) to be a natural number,

\[\frac{dy}{dx} = nx^{n-1} \]

works this for fractional and negative values of \(n \)???: what if \(n = 1 \) or something? if negatives and fractions work not, how do I prove that \(n \) must be a positive integer so that my end result contains the same restrictions on the definition of \(n \) as the thing I set out to prove???