Task
Describe a personal experience.

Full-Sentence Outline of the Speech

I. Lead with the statement that you might not normally think of an additional class as a transforming experience, but for me, Earth Science was because I had Richard Lasselle.
II. Mr. Lasselle made the class thoroughly enjoyable with unique ideas:
 A. Agnes appeared on tests and labs.
 B. He emphasized “Missy.”
 C. He adamantly supported only the metric system for measurement.
III. Mr. Lasselle’s tests were difficult, but they showed me the satisfaction of working hard on a problem.
IV. He showed me the excitement of pursuing a question by his example:
 A. He utilized math to emphasize a key concept involved with porosity.
V. This led me to explore math questions on my own:
 A. I developed a problem based on a car commercial involving the position of the sun.
 B. I have continued to formulate math problems, such as a “bingo problem” and a “pyramid problem.”
The Speech

You might not normally think of an hour-long class taken in addition to the regular school day as the type of experience that would change the way you look at the world. But for me, Earth Science in eighth grade was just that.

The reason was that I had Richard Lasselle as a teacher. Mr. Lasselle is a patient and quiet man, with thick, black hair and small, round glasses; he wore an interesting new tie every day of the year.

The ideas Mr. Lasselle introduced were always fascinating in and of themselves. But he made the class even more enjoyable with odd references or interesting thoughts. For instance, he carried a physically weathered pebble named “Pierre” with him at all times (“Pierre” is French for “rock”). A character named “Agnes” seemed to appear on almost every test, always involved in one situation or another. After we watched a geology video, he repeatedly brought up the fact mentioned in it that James Hutton had a dog named “Missy”: it was the answer to a multiple-choice question on one of his tests and it was a term on one of the many vocabulary sheets we filled out. I even managed, at his suggestion, to weave Missy into my answer to one of the free-response questions on the Earth Science Regents.

Most important of these unconventional ideas was Mr. Lasselle’s ardent belief in the utter foolishness of the English unit system and in the simple genius of the metric system. “Would anyone from the audience like to estimate the length of this room?” (If the answerer says “x feet”,

"I’ll say the following.) “I don’t think I can accept that answer. Anyone else?” (Eventually, I would say the answer in meters if no one else did.)

That was the type of response Mr. Lasselle would give to a student who gave him an answer in the English system of measurement. One of his classroom walls displayed a series of pictures of Beanie Babies, each of which was labeled with its name. Under the picture of the inchworm was written its name, “Inch,” but next to that name was written, in parentheses, “(2.54 cm).” Mr. Lasselle even created a metric clock with his computer, and posted a suggestion for a 13-month calendar on the website HalfBakery.com. All of this instilled in me an appreciation for those human designs which are rational and avoid gratuitous overcomplication; to this day, I—like Mr. Lasselle—refuse to make measurements in anything but the metric system. More broadly, it was these unique traits and ideas that Mr. Lasselle brought to his subject that showed me just how enjoyable and humorous science can be.

Mr. Lasselle is perhaps best known for the difficulty of his tests. Yet, he had good reason for this. If the tests were easy, he would often say, students would not learn very much and would not get better; it would be like trying to become an expert at ping-pong by always playing against your little sister. By making the tests challenging, students are forced to make mistakes and encounter problems that expand their scope of understanding. It was this attitude—that facing challenges is the only way to become better at something—that
converted any frustration I may have felt into motivation to continue trying and into enjoyment of the process of solving a tough problem.

The fostering of this interest and sheer excitement in working on a challenging question may have been Mr. Lasselle’s most important and enduring impact on me. Mr. Lasselle guided the class through many demonstrations of the connections between math and science. He once asked us this question: “Which will have more air space between the particles: a beaker filled with small, spherical particles, or a beaker filled with large, spherical particles?” *Draw the diagrams on the board to illustrate this. Ask the audience, “Would anyone in the audience like to offer a guess?” If no one answers, say “The answer is that they have the same amount of total air space. The amount of space between spherical particles does not depend on the diameter of those particles.”* Not only did this demonstration encourage my love of mathematics, but it also showed me how useful math can be in fully understanding scientific concepts.

It was, furthermore, this inquisitive spirit that impelled me to pursue challenges of my own. Near the end of the year, during our unit on space, Mr. Lasselle mentioned a car commercial he had seen in which a driver, after watching the sun set below the horizon, accelerated his vehicle so quickly that the sun reappeared above the horizon again. I soon realized that the concept could make an interesting challenge: Assuming that the earth were completely spherical and covered entirely
with flat land, at what latitude would the driver in the commercial have to be located in order for him to keep the sun in the same spot in the sky by driving at a constant speed of 150 km/h along one of the parallel circles of the earth’s latitude? I finally answered the problem with Mr. Lasselle’s help; moreover, I am convinced that had I heard about the same commercial a year earlier, before my exposure to Mr. Lasselle’s novel ways of thinking, I would not have even thought to contrive such a problem.

This spirit of excitedly assailing puzzles has stayed with me. In ninth grade, I helped to found “Math Club” at the high school for this very purpose. I completed a list of possible solutions to a “clock problem” that Mr. Lasselle first developed. I invented and wrote tentative solutions to a “pyramid problem,” a “bingo problem,” and a problem asking the probability that any two people in a class of twenty will share the same birthday. I have written down questions to ask Mr. Lasselle, both puzzles I wanted him to solve and actual questions I was curious about.

There were many aspects of Mr. Lasselle’s teaching style that shaped my approach to learning. He emphasized the value of understanding concepts rather than memorizing more than the basic facts. At the same time, his novel methods of instruction and his interestingly different ideas made his class thoroughly enjoyable. Most importantly, his example showed me that the tackling of difficult
challenges—whether in mathematics or in other areas of life—can be the most rewarding experience of all.